433 research outputs found

    Attentive Statistics Pooling for Deep Speaker Embedding

    Full text link
    This paper proposes attentive statistics pooling for deep speaker embedding in text-independent speaker verification. In conventional speaker embedding, frame-level features are averaged over all the frames of a single utterance to form an utterance-level feature. Our method utilizes an attention mechanism to give different weights to different frames and generates not only weighted means but also weighted standard deviations. In this way, it can capture long-term variations in speaker characteristics more effectively. An evaluation on the NIST SRE 2012 and the VoxCeleb data sets shows that it reduces equal error rates (EERs) from the conventional method by 7.5% and 8.1%, respectively.Comment: Proc. Interspeech 2018, pp2252--2256. arXiv admin note: text overlap with arXiv:1809.0931

    17Cr-4Ni-4Cu precipitation hardening stainless steel (1): The effect of heat treatments on the properties of the casted material

    Get PDF

    Satellite glial cell P2Y12 receptor in the trigeminal ganglion is involved in lingual neuropathic pain mechanisms in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been reported that the P2Y<sub>12 </sub>receptor (P2Y<sub>12</sub>R) is involved in satellite glial cells (SGCs) activation, indicating that P2Y<sub>12</sub>R expressed in SGCs may play functional roles in orofacial neuropathic pain mechanisms. However, the involvement of P2Y<sub>12</sub>R in orofacial neuropathic pain mechanisms is still unknown. We therefore studied the reflex to noxious mechanical or heat stimulation of the tongue, P2Y<sub>12</sub>R and glial fibrillary acidic protein (GFAP) immunohistochemistries in the trigeminal ganglion (TG) in a rat model of unilateral lingual nerve crush (LNC) to evaluate role of P2Y<sub>12</sub>R in SGC in lingual neuropathic pain.</p> <p>Results</p> <p>The head-withdrawal reflex thresholds to mechanical and heat stimulation of the lateral tongue were significantly decreased in LNC-rats compared to sham-rats. These nocifensive effects were apparent on day 1 after LNC and lasted for 17 days. On days 3, 9, 15 and 21 after LNC, the mean relative number of TG neurons encircled with GFAP-immunoreactive (IR) cells significantly increased in the ophthalmic, maxillary and mandibular branch regions of TG. On day 3 after LNC, P2Y<sub>12</sub>R expression occurred in GFAP-IR cells but not neuronal nuclei (NeuN)-IR cells (i.e. neurons) in TG. After 3 days of successive administration of the P2Y<sub>12</sub>R antagonist MRS2395 into TG in LNC-rats, the mean relative number of TG neurons encircled with GFAP-IR cells was significantly decreased coincident with a significant reversal of the lowered head-withdrawal reflex thresholds to mechanical and heat stimulation of the tongue compared to vehicle-injected rats. Furthermore, after 3 days of successive administration of the P2YR agonist 2-MeSADP into the TG in naïve rats, the mean relative number of TG neurons encircled with GFAP-IR cells was significantly increased and head-withdrawal reflex thresholds to mechanical and heat stimulation of the tongue were significantly decreased in a dose-dependent manner compared to vehicle-injected rats.</p> <p>Conclusions</p> <p>The present findings provide the first evidence that the activation of P2Y<sub>12</sub>R in SGCs of TG following lingual nerve injury is involved in the enhancement of TG neuron activity and nocifensive reflex behavior, resulting in neuropathic pain in the tongue.</p

    Mechanisms involved in extraterritorial facial pain following cervical spinal nerve injury in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study is to clarify the neural mechanisms underlying orofacial pain abnormalities after cervical spinal nerve injury. Nocifensive behavior, phosphorylated extracellular signal-regulated kinase (pERK) expression and astroglial cell activation in the trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal dorsal horn (C1-C2) neurons were analyzed in rats with upper cervical spinal nerve transection (CNX).</p> <p>Results</p> <p>The head withdrawal threshold to mechanical stimulation of the lateral facial skin and head withdrawal latency to heating of the lateral facial skin were significantly lower and shorter respectively in CNX rats compared to Sham rats. These nocifensive effects were apparent within 1 day after CNX and lasted for more than 21 days. The numbers of pERK-like immunoreactive (LI) cells in superficial laminae of Vc and C1-C2 were significantly larger in CNX rats compared to Sham rats following noxious and non-noxious mechanical or thermal stimulation of the lateral facial skin at day 7 after CNX. Two peaks of pERK-LI cells were observed in Vc and C1-C2 following mechanical and heat stimulation of the lateral face. The number of pERK-LI cells in C1-C2 was intensity-dependent and increased when the mechanical and heat stimulations of the face were increased. The decrements of head withdrawal latency to heat and head withdrawal threshold to mechanical stimulation were reversed during intrathecal (i.t.) administration of MAPK/ERK kinase 1/2 inhibitor PD98059. The area of activated astroglial cells was significantly higher in CNX rats (at day 7 after CNX). The heat and mechanical nocifensive behaviors were significantly depressed and the number of pERK-LI cells in Vc and C1-C2 following noxious and non-noxious mechanical stimulation of the face was also significantly decreased following i.t. administration of the astroglial inhibitor fluoroacetate.</p> <p>Conclusions</p> <p>The present findings have demonstrated that mechanical allodynia and thermal hyperalgesia occur in the lateral facial skin after CNX and also suggest that ERK phosphorylation of Vc and C1-C2 neurons and astroglial cell activation are involved in orofacial extraterritorial pain following cervical nerve injury.</p
    corecore